\Dynamic Glitter Text Generator at TextSpace.net

Jumat, 09 November 2012

Thermokimia

Definisi Termokimia

termokimia Termokimia dapat didefinisikan sebagai bagian ilmu kimia yang mempelajari dinamika atau perubahan reaksi kimia dengan mengamati panas/termal nya saja. Salah satu terapan ilmu ini dalam kehidupan sehari-hari ialah reaksi kimia dalam tubuh kita dimana produksi dari energi-energi yang dibutuhkan atau dikeluarkan untuk semua tugas yang kita lakukan. Pembakaran dari bahan bakar seperti minyak dan batu bara dipakai untuk pembangkit listrik. Bensin yang dibakar dalam mesin mobil akan menghasilkan kekuatan yang menyebabkan mobil berjalan. Bila kita mempunyai kompor gas berarti kita membakar gas metan (komponen utama dari gas alam) yang menghasilkan panas untuk m emas ak. Dan melalui urutan reaksi yang disebut metabolisme, makanan yang dimakan akan menghasilkan energi yang kita perlukan untuk tubuh agar berfungsi.
Hampir semua reaksi kimia selalu ada energi yang diambil atau dikeluarkan. Mari kita periksa terjadinya hal ini dan bagaimana kita mengetahui adanya perubahan energi.
Peristiwa termokimia Peristiwa termokimia
Misalkan kita akan melakukan reaksi kimia dalam suatu tempat tertutup sehingga tak ada panas yang dapat keluar atau masuk kedalam campuran reaksi tersebut. Atau reaksi dilakukan sedemikian rupa sehingga energi total tetap sama. Juga misalkan energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi sehingga waktu reaksi terjadi ada penurunan energi potensial. Tetapi energi ini tak dapat hilang begitu saja karena energi total (kinetik dan potensial) harus tetap konstan. Sebab itu, bila energi potensialnya turun, maka energi kinetiknya harus naik berarti energi potensial berubah menjadi energi kinetik. Penambahan jumlah energi kinetik akan menyebabkan harga rata-rata energi kinetik dari molekulmolekul naik, yang kita lihat sebagai kenaikan temperatur dari campuran reaksi. Campuran reaksi menjadi panas.
Kebanyakan reaksi kimia tidaklah tertutup dari dunia luar. Bila campuran reaksi menjadi panas seperti digambarkan dibawah, panas dapat mengalir ke sekelilingnya. Setiap perubahan yang dapat melepaskan energi ke sekelilingnya seperti ini disebut perubahan eksoterm. Perhatikan bahwa bila terjadi reaksi eksoterm, temperatur dari campuran reaksi akan naik dan energi potensial dari zat-zat kimia yang bersangkutan akan turun.
Kadang-kadang perubahan kimia terjadi dimana ada kenaikan energi potensial dari zat-zat bersangkutan. Bila hal ini terjadi, maka energi kinetiknya akan turun sehingga temperaturnya juga turun. Bila sistem tidak tertutup di sekelilingnya, panas dapat mengalir ke campuran reaksi dan perubahannya disebut perubahan endoterm. Perhatikan bahwa bila terjadi suatu reaksi endoterm, temperatur dari campuran reaksi akan turun dan energi potensial dari zat-zat yang ikut dalam reaksi akan naik.
Peristiwa kebakaran menghasilkan panas Peristiwa kebakaran menghasilkan panas

Pengukuran Energi Dalam Reaksi Kimia

Satuan internasional standar untuk energi yaitu Joule (J) diturunkan dari energi kinetik. Satu joule = 1 kgm 2 /s 2 . Setara dengan jumlah energi yang dipunyai suatu benda dengan massa 2 kg dan kecepatan 1 m/detik (bila dalam satuan Inggris, benda dengan massa 4,4 lb dan kecepatan 197 ft/menit atau 2,2 mile/jam).
1 J = 1 kg m 2 /s 2
Satuan energi yang lebih kecil yang dipakai dalam fisika disebut erg yang harganya = 1×10 -7 J. Dalam mengacu pada energi yang terlibat dalam reaksi antara pereaksi dengan ukuran molekul biasanya digantikan satuan yang lebih besar yaitu kilojoule (kJ). Satu kilojoule = 1000 joule (1 kJ = 1000J).
Semua bentuk energi dapat diubah keseluruhannya ke panas dan bila seorang ahli kimia mengukur energi, biasanya dalam bentuk kalor. Cara yang biasa digunakan untuk menyatakan panas disebut kalori (singkatan kal). Definisinya berasal dari pengaruh panas pada suhu benda. Mula-mula kalori didefinisikan sebagai jumlah panas yang diperlukan untuk menaikkan temperatur 1 gram air dengan suhu asal 15 0 C sebesar 1 0 C. Kilokalori (kkal) seperti juga kilojoule merupakan satuan yang lebih sesuai untuk menyatakan perubahan energi dalam reaksi kimia. Satuan kilokalori juga digunakan untuk menyatakan energi yang terdapat dalam makanan.
Dengan diterimanya SI, sekarang juga joule (atau kilojoule) lebih disukai dan kalori didefinisi ulang dalam satuan SI. Sekarang kalori dan kilokalori didefinisikan secara eksak sebagai berikut :
1 kal = 4,184 J
1 kkal = 4,184 kJ
 

 

Panas Reaksi dan Termokimia

Hubungan sistem dengan lingkungan Hubungan sistem dengan lingkungan
Pelajaran mengenai panas reaksi dinamakan termokimia yang merupakan bagian dari cabang ilmu pengetahuan yang lebih besar yaitu termodinamika. Sebelum pembicaraan mengenai prisip termokimia ini kita lanjutkan, akan dibuat dulu definisi dari beberapa istilah. Salah satu dari istilah yang akan dipakai adalah sistim. Sistim adalah sebagian dari alam semesta yang sedang kita pelajari. Mungkin saja misalnya suatu reaksi kimia yang terjadi dalam suatu gelas kimia. Di luar sistim adalah lingkungan. Dalam menerangkan suatu sistim, kita harus memperinci sifat-sifatnya secara tepat. Diberikan suhunya, tekanan, jumlah mol dari tiap zat dan berupa cairan, padat atau gas. Setelah semua variabel ini ditentukan berarti semua sifat-sifat sistim sudah pasti, berarti kita telah menggambarkan keadaan dari sistim.
Bila perubahan terjadi pada sebuah sistim maka dikatakan bahwa sistim bergerak dari keadaan satu ke keadaan yang lain. Bila sistim diisolasi dari lingkungan sehingga tak ada panas yang dapat mengalir maka perubahan yang terjadi di dalam sistim adalah perubahan adiabatik. Selama ada perubahan adiabatik, maka suhu dari sistim akan menggeser, bila reaksinya eksotermik akan naik sedangkan bila reaksinya endotermik akan turun. Bila sistim tak diisolasi dari lingkungannya, maka panas akan mengalir antara keduanya, maka bila terjadi reaksi, suhu dari sistim dapat dibuat tetap. Perubahan yang terjadi pada temperatur tetap dinamakan perubahan isotermik. Telah dikatakan, bila terjadi reaksi eksotermik atau endotermik maka pada zat-zat kimia yang terlibat akan terjadi perubahan energi potensial. Panas reaksi yang kita ukur akan sama dengan perubahan energi potensial ini. Mulai sekarang kita akan menggunakan perubahan ini dalam beberapa kuantitas sehingga perlu ditegakkan beberapa peraturan untuk menyatakan perubahan secara umum.
Simbol Δ (huruf Yunani untuk delta) umumnya dipakai untuk menyatakan perubahan kuantitas. Misalnya perubahan suhu dapat ditulis dengan ΔT, dimana T menunjukkan temperatur. Dalam praktek biasanya dalam menunjukkan perubahan adalah dengan cara mengurangi temperatur akhir dengan temperatur mula-mula.
ΔT = T akhir – T mula-mula
Demikian juga, perubahan energi potensial
(Ep) Δ(E.P) = EP akhir – EP awal
Dari definisi ini didapat suatu kesepakatan dalam tanda aljabar untuk perubahan eksoterm dan endoterm. Dalam perubahan eksotermik, energi potensial dari hasil reaksi lebih rendah dari energi potensial pereaksi berarti EP akhir lebih rendah dari EP mula-mula . Sehingga harga ÷EP mempunyai harga negatif. Kebalikannya dengan reaksi endoterm, dimana harga ÷EP adalah positif.

Reaksi Eksoterm dan Endoterm

Peristiwa endoterm (kanan) dan eksoterm (kiri) Peristiwa endoterm (kanan) dan eksoterm (kiri)
Reaksi Eksoterm
Pada reaksi eksoterm terjadi perpindahan kalor dari sistem ke lingkungan atau pada reaksi tersebut dikeluarkan panas. Pada reaksi eksoterm harga ΔH = negatif ( – )
Contoh :
C(s) + O 2 (g) → CO 2 (g) + 393.5 kJ ;
ΔH = -393.5 kJ
Reaksi Endoterm
Pada reaksi terjadi perpindahan kalor dari lingkungan ke sistem atau pada reaksi tersebut dibutuhkan panas. Pada reaksi endoterm harga ΔH = positif ( + )
Contoh :
CaCO 3(s) → CaO (s) + CO 2(g) - 178.5 kJ ; ΔH = +178.5 kJ
Proses eksoterm dan proses endoterm Proses eksoterm dan proses endoterm
1 kkal = 4,184 kJ

Perubahan Entalpi

Entalpi = H = Kalor reaksi pada tekanan tetap = Qp
Perubahan entalpi adalah perubahan energi yang menyertai peristiwa perubahan kimia pada tekanan tetap.
a. Pemutusan ikatan membutuhkan energi (= endoterm)
Contoh: H 2 → 2H – a kJ ; DH= +akJ
b. Pembentukan ikatan memberikan energi (= eksoterm)
Contoh: 2H → H 2 + a kJ ; DH = -a kJ
Istilah yang digunakan pada perubahan entalpi :
1. Entalpi Pembentakan Standar ( DHf ):
DH untak membentuk 1 mol persenyawaan langsung dari unsur-unsurnya yang diukur pada 298 K dan tekanan 1 atm. Contoh: H 2 (g) + 1/2 O 2 (g) → H 2 0 (l) ; DHf = -285.85 kJ
2. Entalpi Penguraian:
DH dari penguraian 1 mol persenyawaan langsung menjadi unsur-unsurnya (= Kebalikan dari DH pembentukan). Contoh: H 2 O (l) → H 2 (g) + 1/2 O 2 (g) ; DH = +285.85 kJ
3. Entalpi Pembakaran Standar ( DHc ):
DH untuk membakar 1 mol persenyawaan dengan O 2 dari udara yang diukur pada 298 K dan tekanan 1 atm. Contoh: CH 4 (g) + 2O 2 (g) → CO 2 (g) + 2H 2 O(l) ; DHc = -802 kJ
4. Entalpi Reaksi:
DH dari suatu persamaan reaksi di mana zat-zat yang terdapat dalam persamaan reaksi dinyatakan dalam satuan mol dan koefisien-koefisien persamaan reaksi bulat sederhana. Contoh: 2Al + 3H 2 SO 4 → Al 2 (SO 4 ) 3 + 3H 2 ; DH = -1468 kJ
5. Entalpi Netralisasi:
DH yang dihasilkan (selalu eksoterm) pada reaksi penetralan asam atau basa. Contoh: NaOH(aq) + HCl(aq) → NaCl(aq) + H 2 O(l) ; DH = -890.4 kJ/mol
6. Hukum Lavoisier-Laplace
“Jumlah kalor yang dilepaskan pada pembentukan 1 mol zat dari unsur-unsurya = jumlah kalor yang diperlukan untuk menguraikan zat tersebut menjadi unsur-unsur pembentuknya.”
Artinya : Apabila reaksi dibalik maka tanda kalor yang terbentuk juga dibalik dari positif menjadi negatif atau sebaliknya Contoh:
N 2 (g) + 3H 2 (g) → 2NH 3 (g) ; DH = – 112 kJ
2NH 3 (g) → N 2 (g) + 3H 2 (g) ; DH = + 112 kJ

Entalpi Pembentukan,Pembakaran dan Penguraian

Data termokimia pada umumnya ditetapkan pada suhu 25 0 C dan tekanan 1 atm yang selanjutnya disebut kondisi standar . Perubahan entalpi yang diukur pada suhu 25 0 C dan tekanan 1 atm disebut perubahan entalpi standar dan dinyatakan dengan lambang Δ H 0 atau ΔH298. Sedangkan perubahan entalpi yang pengukurannya tidak merujuk kondisi pengukurannya dinyatakan dengan lambang ΔH saja.
Entalpi molar adalah perubahan entalpi reaksi yang dikaitkan dengan kuantitas zat yang terlibat dalam reaksi. Dalam termokimia dikenal berbagai macam entalpi molar, seperti entalpi pembentukan, entalpi penguraian, dan entalpi pembakaran.

Entalpi Pembentukan

Ada suatu macam persamaan termokimia yang penting yang berhubungan dengan pembentukan satu mol senyawa dari unsurunsurnya. Perubahan entalpi yang berhubungan dengan reaksi ini disebut panas pembentukan atau entalpi pembentukan yang diberi simbol ΔH f . Misalnya persamaan termokimia untuk pembentukan air dan uap air pada 100 0 C dan 1 atm masing-masing.
rm1
Bagaimana dapat kita gunakan persamaan ini untuk mendapatkan panas penguapan dari air? Yang jelas persamaan (1) harus kita balik, lalu dijumlahkan dengan persamaan (2). Jangan lupa untuk mengubah tanda ΔH. (Jika pembentukan H 2 O (l) eksoterm, seperti dicerminkan oleh ΔH f yang negatif, proses kebalikannya haruslah endoterm) yang berarti eksoterm menjadi positif yang berarti menjadi endoterm.

Eksoterm

Eksoterm (menghasilkan panas) Eksoterm (menghasilkan panas)
rm2

Endoterm

rm311
Bila kita jumlahkan persamaan (1) dan (2), kita dapat
rm410
Dan panas reaksinya =
rm56
Perhatikan bahwa panas reaksi untuk seluruh perubahan sama dengan panas pembentukan hasil reaksi dikurangi panas pembentukan dari pereaksi. Secara umum dapat ditulis :
rm65
Harga perubahan entalpi reaksi dapat dipengaruhi oleh kondisi yakni suhu dan tekanan saat pengukuran. Oleh karena itu, perlu kondisi suhu dan tekanan perlu dicantumkan untuk setiap data termokimia.

Entalpi Pembakaran


Reaksi suatu zat dengan oksigen disebut reaksi pembakaran . Zat yang mudah terbakar adalah unsur karbon, hidrogen, belerang, dan berbagai senyawa dari unsur tersebut. Pembakaran dikatakan sempurna apabila karbon (c) terbakar menjadi CO2, hidrogen (H) terbakar menjadi H2O, belerang (S) terbakar menjadi SO2.
Perubahan entalpi pada pembakaran sempurna 1 mol suatu zat yang diukur pada 298 K, 1 atm disebut entalpi pembakaran standar (standard enthalpy of combustion), yang dinyatakan dengan Δ Hc 0 . Entalpi pembakaran juga dinyatakan dalam kJ mol -1 .
Harga entalpi pembakaran dari berbagai zat pada 298 K, 1 atm diberikan pada tabel 3 berikut.
Tabel 3 . Entalpi Pembakaran dari berbagai zat pada 298 K, 1 atm
gb18
Pembakaran bensin adalah suatu proses eksoterm. Apabila bensin dianggap terdiri atas isooktana, C8H18 (salah satu komponen bensin) tentukanlah jumlah kalor yang dibebaskan pada pembakaran 1 liter bensin. Diketahui entalpi pembakaran isooktana = -5460 kJ mol -1 dan massa jenis isooktan = 0,7 kg L -1 (H = 1; C =12).
Jawab:
Entalpi pembakaran isooktana yaitu – 5460 kJ mol -1 . Massa 1 liter bensin = 1 liter x 0,7 kg L-1 = 0,7 kg = 700 gram . Mol isooktana = 700 gram/114 gram mol -1 = 6,14 mol. Jadi kalor yang dibebaskan pada pembakaran 1 liter bensin adalah: 6,14 mol x 5460 kJ mol -1 = 33524,4 kJ.

Pembakaran Sempurna dan Tidak Sempurna


Pembakaran bahan bakar dalam mesin kendaraan atau dalam industri tidak terbakar sempurna. Pembakaran sempurna senyawa hidro karbon (bahan bakar fosil) membentuk karbon dioksida dan uap air. Sedangkan pembakaran tak sempurna membentuk karbon monoksida dan uap air. Misalnya:
a. Pembakaran sempurna isooktana:
C8H18 (l) +12 ½ O2 (g) –> 8 CO2 (g) + 9 H2O (g) ΔH = -5460 kJ
b. Pembakaran tak sempurna isooktana:
C8H18 (l) + 8 ½ O2 (g) -> 8 CO (g) + 9 H2O (g) ΔH = -2924,4 kJ
Dampak Pembakaran tak Sempurna
Sebagaimana terlihat pada contoh di atas, pembakaran tak sempurna menghasilkan lebih sedikit kalor. Jadi, pembakaran tak sempurna mengurangi efisiensi bahan bakar. kerugian lain dari pembakaran tak sempurna adalah dihasilkannya gas karbon monoksida (CO), yang bersifat racun. Oleh karena itu, pembakaran tak sempurna akan mencemari udara.

Entalpi Penguraian

Reaksi penguraian adalah kebalikan dari reaksi pembentukan. Oleh karena itu, sesuai dengan azas kekekalan energi, nilai entalpi penguraian sama dengan entalpi pembentukannya, tetapi tandanya berlawanan.
Contoh:
Diketahui Δ Hf 0 H2O (l) = -286 kJ mol -1, maka entalpi penguraian H2O (l) menjadi gas hidrogen dan gas oksigen adalah + 286 kJ mol -1
H2O (l) ——> H2 (g) + ½ O2 (g) ΔH = + 286 kJ


Energi-Energi Dan Ikatan Kimia


Reaksi kimia merupakan proses pemutusan dan pembentukan ikatan. Proses ini selalu disertai perubahan energi. Energi yang dibutuhkan untuk memutuskan ikatan kimia, sehingga membentuk radikal-radikal bebas disebut energi ikatan. Untuk molekul kompleks, energi yang dibutuhkan untuk memecah molekul itu sehingga membentuk atom-atom bebas disebut energi atomisasi.
Harga energi atomisasi ini merupakan jumlah energi ikatan atom-atom dalam molekul tersebut. Untuk molekul kovalen yang terdiri dari dua atom seperti H 2, 0 2, N 2 atau HI yang mempunyai satu ikatan maka energi atomisasi sama dengan energi ikatan Energi atomisasi suatu senyawa dapat ditentukan dengan cara pertolongan entalpi pembentukan senyawa tersebut. Secara matematis hal tersebut dapat dijabarkan dengan persamaan :
ΔH reaksi = Jml energi pemutusan ikatan - Jml energi pembentukan ikatan

= Jml energi ikatan di kiri - Jml energi ikatan di kanan
Contoh:
Diketahui :
energi ikatan
C – H = 414,5 kJ/Mol
C = C = 612,4 kJ/mol
C – C = 346,9 kJ/mol
H – H = 436,8 kJ/mol
Ditanya:
ΔH reaksi = C 2 H 4 (g) + H 2 (g) → C 2 H 6 (g)
kimia-sma_001
ΔH reaksi = Jumlah energi pemutusan ikatan – Jumlah energi pembentukan ikatan

= (4(C-H) + (C=C) + (H-H)) – (6(C-H) + (C-C))
= ((C=C) + (H-H)) – (2(C-H) + (C-C))
= (612.4 + 436.8) – (2 x 414.5 + 346.9)
= – 126,7 kJ
 
 

Perubahan Entalpi Berdasarkan Energi Ikatan

Energi ikatan didefinisikan sebagai energi yang diperlukan untuk memutuskan 1 mol ikatan dari suatu molekul dalam wujud gas. Energi ikatan dinyatakan dalam kilojoule per mol (kJ mol -1 )
Energi berbagai ikatan diberikan pada tabel 1.
Tabel 1. Harga Energi ikatan berbagai molekul (kJ/mol)
gb15

Perubahan Entalpi Berdasarkan Entalpi Pembentukan

Kalor suatu reaksi dapat juga ditentukan dari data entalpi pembentukan zat pereaksi dan produknya. Dalam hal ini, zat pereaksi dianggap terlebih dahulu terurai menjadi unsur-unsurnya, kemudian unsur-unsur itu bereaksi membentuk zat produk. Secara umum untuk reaksi:
m AB + n CD —–> p AD + q CB
ΔH 0 = jumlah ΔH 0 f (produk) - jumlah ΔH 0 f (pereaksi)
Perubahan Entalpi Berdasarkan Hukum Hess
Banyak reaksi yang dapat berlangsung secara bertahap. Misalnya pembakaran karbon atau grafit. Jika karbon dibakar dengan oksigen berlebihan terbentuk karbon dioksida menurut persamaan reaksi:
C(s) + O2 (g) —–> CO2 (g) Δ H = – 394 kJ
Reaksi diatas dapat berlangsung melalui dua tahap. Mula-mula karbon dibakar dengan oksigen yang terbatas sehingga membentuk karbon monoksida. Selanjutnya, karbon monoksida itu dibakar lagi untuk membentuk karbon dioksida. Persamaan termokimia untuk kedua reaksi tersebut adalah:
C (s) + ½ O2 (g) —–> CO (g) ΔH = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) Δ H = – 283 kJ
Jika kedua tahap diatas dijumlahkan, maka diperoleh:
C (s) + ½ O2 (g) —–> CO (g) ΔH = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) ΔH = – 283 kJ
————————————————————————- +
C(s) + O2 (g) —–> CO2 (g) ΔH = – 394 kJ
 
 

Penentuan Perubahan Entalpi Dan Hukum Hess

PENENTUAN PERUBAHAN ENTALPI

Untuk menentukan perubahan entalpi pada suatu reaksi kimia biasanya digunakan alat seperti kalorimeter, termometer dan sebagainya yang mungkin lebih sensitif.
Perhitungan : ΔH reaksi = Jumlah ΔH f o produk – Jumlah ΔH f o reaktan

HUKUM HESS

“Jumlah panas yang dibutuhkan atau dilepaskan pada suatu reaksi kimia tidak tergantung pada jalannya reaksi tetapi ditentukan oleh keadaan awal dan akhir.”
Contoh:
C(s) + O 2 (g) → CO 2 (g) ; ΔH = x kJ → 1 tahap
C(s) + 1/2 0 2 (g) → CO(g) ; ΔH = y kJ → 2 tahap
CO(g) + 1/2 O 2 (g) → CO 2 (g) ; ΔH = z kJ
———————————————————— +
C(s) + O 2 (g) → CO 2 (g) ; ΔH = y + z kJ
Menurut Hukum Hess : x = y + z

Laju Reaksi

KONSEP LAJU REAKSI

1. Pengertian Laju Reaksi
Laju menyatakan seberapa cepat atau seberapa lambat suatu proses berlangsung. Laju juga menyatakan besarnya perubahan yang terjadi dalam satu satua waktu. Satuan waktu dapat berupa detik, menit, jam, hari atau tahun.
Reaksi kimia adalah proses perubahan zat pereaksi menjadi produk. Seiring dengan bertambahnya waktu reaksi, maka jumlah zat peraksi semakin sedikit, sedangkan produk semakin banyak. Laju reaksi dinyatakan sebagai laju berkurangnya pereaksi atau laju terbentuknya produk.

2. Ungkapan Laju Reaksi untuk Sistem Homogen

Untuk sistem homogen, laju reaksi umum dinyatakan sebagai laju penguragan konsentrasi molar pereaksi atau laju pertambahan konsentrasi molar produk untuk satu satuan waktu, sebagai berikut:


















Jika diketahui satuan dari konsentrasi molar adalah mol/L. Maka satuan dari laju reaksi adalah mol/L.det atau M/det.
3. Laju Rerata dan Laju Sesaat
a. Laju rerata
Laju rerata adalah rerata laju untuk selang waktu tertentu. Perbedaan antara laju rerata dengan laju sesaat dapat diandaikan dengan laju kendaraan. Misalnya suatu kendaraan menempuh jarak 300 km dalam 5 jam. Laju rerata kendaraan itu adalah 300 km/5 jam = 60 km/jam. Tentu saja laju kendaraan tidak selalu 60 km/jam. Laju sesaat ditunjukkan oleh speedometer kendaraan.

b. Laju Sesaat
Laju sesaat adalah laju pada saat tertentu. Sebagai telah kita lihat sebelumnya, laju reaksi berubah dari waktu ke waktu. Pada umumnya, laju reaksi makin kecil seiring dengan bertambahnya waktu reaksi. oleh karena itu, plot konsentrasi terhadap waktu berbentuk garis lengkung, seperti gambar di bawah ini. Laju sesaat pada waktu t dapat ditentukan dari kemiringan (gradien) tangen pada saat t tersebut, sebagai berikut.
  1. Lukis garis singgung pada saat t
  2. Lukis segitiga untuk menentukan kemiringan
  3. laju sesaat = kemiringan tangen









FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI

Pengalaman menunjukan bahwa serpihan kayu terbakar lebih cepat daripada balok kayu, hal ini berarti bahwa laju reaksi yag sama dapat berlangsung dengan kelajuan yang berbeda, bergantung pada keadaan zat pereaksi. Dalam bagian ini akan dibahas faktor-faktor yang mempengaruhi laju reaksi. Pengetahuan tentang hal ini memungkinkan kita dapat mengendalikan laju reaksi, yaitu melambatkan reaksi yang merugikan dan menambah laju reaksi yang menguntungkan.

1. Konsentrasi Pereaksi

Konsentrasi memiliki peranan yang sangat penting dalam laju reaksi, sebab semakin besarkonsentrasi pereaksi, maka tumbukan yang terjadi semakin banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil konsentrasi pereaksi, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil.


2. Suhu

Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.
3. Tekanan

Banyak reaksi yang melibatkan pereaksi dalam wujud gas. Kelajuan dari pereaksi seperti itu juga dipengaruhi tekanan. Penambahan tekanan dengan memperkecil volume akan memperbesar konsentrasi, dengan demikian dapat memperbesar laju reaksi.
4. Katalis

Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.

5. Luas Permukaan Sentuh
Luas permukaan sentuh memiliki peranan yang sangat penting dalam laju reaksi, sebab semakin besar luas permukaan bidang sentuh antar partikel, maka tumbukan yang terjadi semakin banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi.



Jumat, 02 November 2012

cemistry lesson

Pereaksi Pembatas (Hitungan Kimia)


  Sesuai namanya, pereaksi pembatas adalah zat (pereaksi) yang membatasi jumlah produk yang dihasilkan pada suatu reaksi.  Dikatakan membatasi jumlah produk yang dihasilkan karena zat tersebut telah habis terlebih dahulu selagi zat yang lain masih ada, padahal keberadaannya sangat diperlukan untuk reaksi selanjutnya (menghasilkan produk).   Jadi, pereaksi pembatas adalah pereaksi yang habis terlebih dahulu (pertama kali).
Pereaksi pembatas dapat ditentukan dengan cara membagi jumlah mol setiap pereaksi masing-masing dengan koefisien reaksinya (= kuosien reaksi, Q).  Tentu saja dari reaksi yang sudah setara.  Pereaksi dengan kuosien reaksi terkecil merupakan pereaksi pembatas. Dengan demikian kalau tersedia beberapa zat pereaksi dengan jumlahnya masing-masing, kita dapat meramalkan zat pereaksi apa yang nantinya habis terlebih dahulu atau zat apa yang tersisa.
Untuk perhitungan selanjutnya, jumlah (mol) pereaksi pembatas dipakai sebagai pembanding/ standarnya.  Baik jumlah produk ataupun zat lain yang bereaksi.
Contoh : Sebanyak 6,5 gram logam Zn (Ar Zn = 65) direaksikan dengan 1000 mL larutan HCl 0,16 M.  Tentukan jumlah zat yang tersisa dan volume gas H2 yang dihasilkan (STP).  Reaksi yang terjadi :
Zn (s)  +  2HCl (aq)  –>  ZnCl2 (aq)  +  H2 (g)
Jawab :
Mol Zn = 6,5/65 = 0,1 mol (koefisien reaksi = 1)
Q Zn = 0,1/1 = 0,1
Mol HCl = 1000 x 0,16 = 160 mmol = 0,16 mol (koefisien reaksi = 2)
Q HCl = 0,16/2 = 0,08
Ternyata Q HCl < Q Zn, sehingga HCl merupakan pereaksi pembatas (pereaksi yang habis lebih dulu).
.                   Zn (s)       +       2HCl (aq)  —>       ZnCl2 (aq)  +       H2 (g)
Mula2        0,1                      0,16                          -                              -
Reaksi      -0,08                  -0,16                         +0,08                    +0,08
______________________________________________________ +
Akhir        0,02 mol           0                                0,08 mol              0,08 mol
Zat yang tersisa Zn = 0,02 mol
= (0,02 x 65) gram
= 1,30 gram
Gas H2 yang dihasilkan = 0,08 x 22,4 L
= 1,72 L

 

Membuat Rumus Lewis


Memuat/menuliskan rumus Lewis adalah gampang-gampang susah.  Gampang kalau udah tau caranya, tetapi terkadang susah kalau pas ketemu dengan senyawa yang agak kompleks rumusnya.  Asal tahu jumlah elektron dari masing-masing unsur.  Pada dasarnya adalah dengan kira-kira (coba-coba).  Untuk senyawa-senyawa sederhana ini cukup mudah.
Untuk senyawa-senyawa yang agak kompleks, atau yang mengandung ikatan rangkap, atau ikatan koordinat konjugasi atau bahkan ion terkadang menjadi hal yang cukup membuat pusing.  Berikut ada satu cara yang dapat dipakai :
- Hitung jumlah semua elektron yang dimiliki semua atom dalam senyawa
- Tulis kerangka dasar senyawa yang kira-kira masuk akal (atom pusat biasanya yang kekurangan elektronnya paling banyak)
- Berikan masing-masing sepasang elektron untuk setiap ikatan
- Sisa elektron dibagikan kepada semua atom pinggir agar mencapai oktet
- Bila elektron masih tersisa maka diberikan kepada atom pusat
- Tarik satu atau lebih pasangan elektron untuk membuat ikatan rangkap, sehingga atom pusat juga mencapai oktet.
Contoh :  SO3  (atom S punya 6 e valensi, atom O juga punya 6 e valensi)
- Jumlah total elektron (6+3×6) = 24 elektron
- Kerangka dasar molekul : atom S di tengah dikelilingi 3 atom O
- Berikan 3 pasang (6 elektron) untuk 3 ikatan S-O  ————————elektron tersisa 18
- Berikan masing-masing 3 pasang elektron kepada 3 atom O sehingga mencapai oktet —- tak ada elektron tersisa
- Atom S belum oktet, maka tarik sepasang elektron bebas dari O ke atom S membentuk ikatan rangkap
- Selesai, semua atom sudah oktet.  Dua ikatan tunggal, satu ikatan rangkap.

 

Tatanama Senyawa (sekali lagi tentang tatanama)


Informasi terakhir yang penulis ketahui, ada lebih dari 10 juta senyawa yang dikenal saat ini.  Wow..! Apa aja tuh? Siapa yang mau nyebutin? Ha ha ha.. Capek dech..!  Untuk keperlun pendataan, tentulah sekian senyawa yang jumlahnya aduhai itu harus dinamai semua satu demi satu.  Gak boleh ada yang terlewat.  Siapa yang ngurusin semua itu?  Tenang aja, ada IUPAC, International Union of Pure and Applied Chemistry.  Perhimpunan ahli kimia murni dan terapan Internasional.
Bagi kita-kita yang kebetulan harus berurusan dengan penamaan senyawa kimia, “anak sekolahan, terutama kelas X”, saya punya sedikit tip yang mungkin bisa berguna, disamping bisa langsung sowan ke sumbernya sono (IUPAC) tentunya.
Dalam penamaan senyawa, sebaiknya dipahami bahwa penamaan senyawa dikelompokkan atas senyawa kovalen biner, senyawa ion, senyawa basa, senyawa garam dan senyawa asam.  Masing-masing punya aturan sendiri-sendiri.  Mari kita cermati satu per satu.  Senyawa kovalen biner diberi nama dengan cara menggabungkan nama masing-masing unsur dan diberi akhiran -ida (English : -ide).  Jumlah atom masing-masing unsur dicantumkan dengan prefiks/awalan mono, di, tri tetra dst.  Awalan mono pada nama unsur pertama tidak perlu dicantumkan.  Contoh :
NO       : nitrogen monoksida (nitrogen monoxide)
NO2    : nitrogen dioksida (nitrogen dioxide)
N2O    : dinitrogen monoksida (dinitrogen monokside)
N2O3 : dinitrogen trioksida (dinitrogen trioxide)
N2O5 : dinitrogen pentoksida (dinitrogen pentoxide)
PCl5   : fosfor pentaklorida (phosphorus pentachloride)
Kedua, senyawa ion.  Senyawa jenis ini diberi nama dengan cara menggabungkan nama ion kation dan nama anion penyusunnya, tanpa ada prefiks/awalan mono, di, tri dan sebagainya.  Contoh :
FeCl2 : besi(II) klorida atau iron(II) chloride  bukan besi(II) diklorida
FeCl3 : besi(III) klorida atau iron(III) chloride
Cu(NO3) : tembaga(I) nitrat atau copper(I) nitrate
Cu2S   : tembaga(I) sulfida
CuS      : tembaga(II) sulfida
Ketiga, senyawa basa.  Senyawa basa merupakan senyawa ion, tetapi anionnya berupa ion hidroksida (OH-).  Diberi nama dengan menyebutkan nama kation diikuti kata “hidroksida” atau “hidroxide“. Contoh :
NaOH : natrium hidroksida (hanya punya satu bilangan oksidasi, tidak disebutkan)
HgOH : raksa(I) hidroksida
Hg(OH)2 : raksa(II) hidroksida
Keempat, senyawa garam.  Merupakan senyawa ion, dengan ion negatifnya berupa selain OH-, O2-, N3-.  Penamaan sama dengan senyawa ion yang lain.
Kelima, senyawa asam.  Senyawa asam merupakan senyawa kovalen polar.  Dalam air terurai menjadi ion H+ dan ion sisa asam (anion sisa asam).  Senyawa ini diberi nama dengan cara menggabungkan kata “asam” dirangkai dengan nama ion sisa asamnya.  Contoh :
HCl : asam klorida
HBr : asam bromida
HNO2 : asam nitrit
HNO3 : asam nitrat

 

Radioaktifitas


Radioaktifitas ternyata terjadi karena adanya ketidakstabilan inti.  Radioaktifitas sendiri merupakan peristiwa pemancaran radiasi partikel atau energi secara spontan.  Partikel yang dipancarkan oleh oleh zat radioaktif dapat berupa partikel alfa, netron, beta, beta positif ataupun gama . Jenis partikel apa yang dipancarkan oleh suatu inti radioaktif dapat diperkirakan berdasarkan komposisi netron-proton (n/p) dalam inti.  Hal ini dapat dipahami dengan baik dengan mencermati peta radioisotop berikut ini.
Daerah berwarna yang berbentuk pita tersebut berisi data n/p dari inti-inti yang stabil, sehingga dinamai dengan pita kestabilan. Inti-inti pada daerah tersebut memiliki harga n/p antara 1 (untuk inti-inti ringan) sampai dengan 1,5 (untuk inti-inti besar).
Daerah di atas pita kestabilan adalah daerah dengan harga n/p > 1.  Inti-inti yang berada pada daerah ini bersifat tidak stabil karena kelebihan jumlah netron.  Inti-inti jenis ini akan berusaha mencapai pita kestabilan dengan cara merubah kelebihan netron menjadi proton, yaitu dengan memancarkan radiasi beta (elektron).
Daerah di bawah pita kestabilan adalah daerah dengan harga n/p < 1.  Inti-inti yang berada pada daerah ini bersifat tidak stabil karena kelebihan jumlah proton.  Inti-inti jenis ini akan berusaha mencapai pita kestabilan dengan cara merubah kelebihan proton  menjadi netron, yaitu dengan memancarkan radiasi beta positif (elektron bermuatan positif) atau dengan cara menangkap elektron dari kulit paling dalam dengan disertai pemancaran sinar-X. 
Bagaimana dengan inti-inti yang berada di luar daerah kestabilan (inti-inti berat, Z>83)?  Inti-inti jenis ini akan mencapai pita kestabilan dengan cara mengurangi bobotnya, yaitu dengan jalan pemancaran partikel alfa. 
Apabila sekali melepaskan partikel alfa belum cukup, maka akan dilakukan pemancaran lagi dan lagi sampai diperoleh inti yang stabil.  Serangkaian peluruhan yang terjadi disebut sebagi deret radioaktif atau derer peluruhan.